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Abstract 

Supercapattery is the generic name for hybrids of supercapacitor and rechargeable battery. 

Batteries store charge via Faradaic processes, involving reversible transfer of localised or 

zone-delocalised valence electrons.  The former is governed by the Nernst equation. The 

latter leads to pseudocapacitance (or Faradaic capacitance) which may be differentiated 

from electric double layer capacitance with spectroscopic assistance such as electron spin 

resonance. Since capacitive storage is the basis of supercapacitors, the combination of 

capacitive and Nernstian mechanisms has dominated supercapattery research since 2018, 

covering nanostructured and compounded metal oxides and sulfides, water-in-salt and 

redox active electrolytes and bipolar stacks of multi-cells. The technical achievements so far, 

such as specific energy of 270 Wh/kg in aqueous electrolyte, and charging-discharging for 

over 5000 cycles, benchmark a challenging but promising future of supercapattery.    
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1. Challenges to conventional electrochemical energy storage 

Replacing fossil fuels by renewables requires energy storage, for which electrochemical 

energy storage (EES) devices are a desirable fit because of their modular nature, commercial 

choices and potentially fossil-comparable energy capacity.  On the last point, oxidation of 

lithium in electrochemical cells causes a Gibbs energy change (Go
Li = 8.56 kWh/kg at 1000 

oC) that is comparable to that of coal combustion (9.16 kWh/kg) in internal combust engines 

(ICEs) [1].  Representative commercial EES devices include rechargeable batteries (RBs) and 

supercapacitors (SCs), whilst flow batteries are suitable for stationary and large scale storage 

[2-4].  Although far better in energy efficiency than ICEs (ca. 20%), EES devices have neither 

performed to expectations. Laboratory-tested lithium-air battery (LAB) and commercial 

lithium-ion battery (LIB) can only store energy up to 1.0 and 0.3 kWh/kg, respectively, 

pending further improvement in rate and durability.  

Performance wise, RBs offer higher storage capacity than SCs which are however better in 

power capability, energy efficiency, and cycle life. These complementary merits have 

encouraged development of several hybrid devices, including lithium-ion capacitors, redox 
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capacitors, and pseudocapacitors [5]. These hybrids store charge differently from a 

capacitor, but the word capacitor in these names has led to misuse of capacitance as a 

performance indicator [6]. For unambiguous classification and comparison, the generic 

name supercapattery (= supercapacitor + battery) was proposed in 2007, followed by 

laboratory demonstration later [7,8]. In fact, combination of capacitive and lithium storage 

electrodes was reported in earlier literatures, although the term “lithium-ion capacitor” (LIC) 

first appeared also in 2007 [9-12]. Because of their close relation with LIBs, research and 

development of LICs have progressed fast, along with other ion capacitors [13-15].  On the 

contrary, supercapattery rarely appeared in the literature before 2015. The recent growing 

interests are partly driven by curiosity and exploration of new and improved EES 

mechanisms, materials and devices beyond SCs and RBs [16-18]. The other and more 

fundamental reason is related to pseudocapacitance that has been, unfortunately, misused 

to account for the behaviour of many new transition metal compounds that are capable of 

Nernstian storage.   

 

2. Pseudocapacitance explained  

All rechargeable EES devices work following one or a combination of electric double layer 

(EDL) capacitive, pseudocapacitive and battery-like mechanisms [4]. EDL storage is physical 

at the electrode/electrolyte interface, whilst the latter two involve charge transfer reactions 

on electrode and hence are both Faradaic in nature.  Battery-like or Nernstian storage is 

widely known to result from reversible electrode reactions that are broadly governed by the 

Nernst equation.  It is featured by peak-shaped cyclic voltammograms (CVs) and by potential 

plateaux on galvanostatic charging-discharging plots (GCDs). Pseudocapacitance (or Faradaic 

capacitance) presents features same as those of EDL capacitance, namely rectangular CVs 

and linear GCDs. A hypothesis explains such differences by the transfer of localised and 

partially or zone-delocalised valence electrons, leading to Nernstian and pseudocapacitive 

responses, respectively [19]. It agrees with density functional theory modelling of oxygen 

doped graphenes [20,21]. According to the band model [22], localised valence electrons 

have a fixed electronic energy level, corresponding to a fixed potential for their transfer.  

This in turn leads to peak-shaped CVs, and plateau-featured GCDs for Nernstian storage. For 

zone-delocalised valence electrons as in semiconductors (instead of full delocalisation as in 

metals and perfect monolayer graphene), their very close electronic energy levels are 

merged to a sufficiently wide band, into or from which electron transfer occurs in a 

continuous range of potentials. This hypothesis reflects well the rectangular CVs and linear 

GCDs for pseudocapacitive storage.  

Although electrochemical characteristics of pseudocapacitance and EDL capacitance are 

recognised to be the same [4,6,23-25], some authors claimed differentiation between the 

two based on simulation against equation (11) or (12) below [26-28],  

 i = av + bv1/2        (11) 

 i = mvn        (12) 

where i and v are the current and potential scan rate of the CV, respectively, and a, b, m and 

n are constants. For surface confined processes, b = 0, n = 1, but under diffusion control, a = 

0, n =1/2. Otherwise, the electrode reaction is under mixed control.  It was assumed, but 

incorrectly, that the EDL currents resulted from surface confined changes and hence were 
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proportional to v, whilst Faradaic contributions were diffusion controlled, showing a linearity 

of i on v1/2. Obviously, these assumptions contradict the basic knowledge that surface 

confined processes, either capacitive or Nernstian, dominate the behaviour of relatively thin 

electrode coatings. Also, diffusion control could happen in relatively thick electrode coatings, 

into or from which transport of ions are necessary to maintain charge neutrality, for both 

capacitive and Nernstian processes.  

In fact, a Faradic process, either Nernstian or capacitive, always unpairs or pairs electrons in 

the atomic or molecular orbits, which in turn generates or demolishes spins that can be 

monitored by electron spin resonance (ESR) spectroscopy [29,30].  Fig. 1a shows the CVs of 

polyaniline (PAn). Whilst the three peak couples (A1/C1, A2/C2 and A3/C3) are well 

explained elsewhere [33,34], the capacitive responses are evident between 0.1 and 0.5 V. 

For comparison, Fig. 1b presents a typical cyclic esrogram of PAn between -0.2 and 0.5 V 

[30]. It can be seen that the ESR signal varied similarly as the currents on the CVs between 

0.1 and 0.5 V, which is strong evidence of Faradaic dis-/charging with insignificant EDL 

contribution, if any.  Note that A1 on the esrogram is at a more positive potential than A1 on 

the CVs. This difference is due to the ESR signal being proportional to the amount of charge 

passed, instead of the charge flow rate, i.e. the current.  

Ironically, pseudocapacitance is responsible for the synthesis and test of a large number of 

nanostructured transition metal compounds, specially nickel and cobalt based oxides. These 

materials typically showed Nernstian features with appreciable power capability and cycling 

durability, but were unfortunately interpreted by pseudocapacitance with misleadingly high 

capacitance values [31,32].  Following several criticisms [4-6, 24,35], such Nernstian 

materials have been coupled with EDL materials in supercapatteries [36-45].   

 

3. Basics of supercapattery and early development 

Aiming at merging the merits of SC and RB [4,5,18,24], supercapattery engages with both 

capacitive and Faradaic mechanisms [18,46]. Because capacitive storage can be EDL or 

pseudocapacitive, and Faradaic storage can be pseudocapacitive or Nernstian, there is a 

large number of combination options.  

Supercapattery behaviour can result from materials, such as heat treated nickel hydroxide 

films which exhibited fairly rectangular CVs from 0 to 0.35 V vs. SCE, but presented large 

current peaks at more positive potentials in aqueous KOH [47].  Composites of manganese 

oxides (MnOx, 1.5 < x  2) with carbon nanotubes (CNTs) or graphenes can also store charges 

in mixed mechanisms [48-50].  Further, engaging electron transfer reactions of soluble 

species, such as iodide ions, with EDL capacitance of a porous carbon electrode is another 

effective way to combine capacitive and Nernstian mechanisms [24,52-54].     

The device approach to supercapattery considers the relations between the two electrodes.  

Firstly, the charges passing through the capacitive (Qcap) and Nernstian (Qbat) electrodes 

must be equal as expressed by equation (13) [4] where Qsp is the specific charge, and Csp the 

specific capacitance.  

𝑄𝑏𝑎𝑡 = 𝑚𝑏𝑎𝑡𝑄𝑠𝑝 =  𝑚𝑐𝑎𝑝𝐶𝑠𝑝∆𝐸𝑐𝑎𝑝 = 𝑄𝑐𝑎𝑝      (13) 

∆𝐸𝑐𝑎𝑝 =
𝑄𝑠𝑝𝑚𝑏𝑎𝑡

𝐶𝑠𝑝𝑚𝑐𝑎𝑝
          (14)  
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Equation (14) is useful for designing supercapattery, disregarding whether the capacitive or 

Nernstian electrode is the positrode or negatrode.  

Secondly, equal currents occur on both electrodes at any time. For reversible storage in thin 

films, equation (15) governs the relation, linking with the Nernst equation (16) for reduction 

(charging on positrode, or discharging on negatrode) [4]: 

𝑖𝑐𝑎𝑝 = 𝑚𝑐𝑎𝑝𝐶𝑠𝑝
𝑑𝐸𝑐𝑎𝑝

𝑑𝑡
=

𝑛𝐹𝛤𝑟𝑒𝑑𝑜𝑥

𝑡
= 𝑖𝑏𝑎𝑡       (15) 

𝐸𝑏𝑎𝑡 = 𝐸𝑏𝑎𝑡
𝑜 +

𝑅𝑇

𝑛𝐹
ln (

1−𝑥

𝑥
),             𝑥 =

𝛤𝑟𝑒𝑑𝑜𝑥

𝛤𝑡𝑜𝑡𝑎𝑙
=

𝑖𝑡

𝑛𝐹𝛤𝑡𝑜𝑡𝑎𝑙
     (16) 

where   is the amount of the relevant or all redox species in the thin film. Equations (15) 

and (16) were used to calculate the GCD plots in Fig. 2a to 2c [4]. In practical cases, charging 

capacitive electrodes, either EDL or Faradaic, is highly reversible and hence fast. Thus, in the 

calculations, the charging rates of the cell are assumed to be such that the Nernstian 

electrode could respond in accordance with the Nernst equation (16).  These are indeed 

achievable as shown by the experimentally recorded GCDs in Fig. 2d to 2f [38,55,56]. 

 

4. Selected progresses between 2018 and 2019 

4.1. Electrode materials 

Since 2018, supercapattery research, excluding ion capacitors which are reviewed elsewhere 

[13-15], has focused on novel nanostructured and compounded Nernstian materials 

[16,17,37-45]. For example, hydrothermal doping 40% sulfur into FeCo2O4 produced 

nanocaterpillars, and increased the capacitance to 1801 F/g from 779 F/g without doping at 

2 A/g.  The CVs and GCDs were fairly capacitive, but the capacitive potentials ranged only 

from 0 to 0.5 V vs. Ag/AgCl.  Supercapatteries made from an undoped FeCo2O4 negatrode 

and the sulfur-doped positrode performed very well in aqueous 3 mol/L KOH. The cell 

voltage was 1.45 V, achieving specific energy and power of 140 Wh/kg and 1434 W/kg, 

respectively, and over 5000 dis-/charging cycles [16]. However, CVs and GCDs of the 

supercapattery showed clear resistive distortion, indicating higher resistance of the undoped 

negatrode.  Also, energy efficiency estimated from the GCD at 2 A/g was lower than 60%. 

Nanosheets of MoS2 were hydrothermally grown in the pores of a carbon nitride template 

[17]. In aqueous 1 mol/L KOH, the composite showed Nernstian CVs and GCDs from 0.0 V to 

0.5 V. The specific charge capacity reached over 500 C/g. Surprisingly, a symmetrical 

supercapattery was built from this material, leading to unreasonable tests and results.   

An interesting Nernstian positrode was made from nanosheets of carbon-coated Li3V2(PO4)3 

[45]. Li3V2(PO4)3 offers three valence states of V (III, IV and V), corresponding to storage of 

three Li+ ions per formula at high positive potentials, > 3.8 V vs Li/Li+. With an activated 

carbon negatrode in mixed organic carbonates, the supercapattery was tested to 2.7 V to 

ensure reversible lithium storage in Li3V2(PO4)3/C. The cell GCDs presented two shoulders, 

reflecting two steps of lithium storage. Reported specific energy and power were  53 Wh/kg 

and 3 kW/kg, respectively. However, after 2000 cycles, capacity loss reached 35%, 

apparently because repeated lithium-ion insertion and removal caused microscopic fatigue 

damage in the positrode.    
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Carbon negatrodes are often chosen for aqueous electrolytes, imposing high overpotentials 

for hydrogen evolution. Further, nano-pores of activated carbon permit proton or water 

reduction to adsorbed hydrogen atoms or molecules, but restrict their nucleation and 

growth into bubbles. These adsorbed hydrogen species can also be re-oxidised and hence 

increase charge storage capacity [57,58].   

More desirable negatrodes are based on active metals because of their very negative redox 

potentials and reversible electrode reactions [13-15,55,56].  The concern on dendritic 

deposition upon cycling are addressed by several approaches, such as pulsed charging for 

both zinc and lithium deposition [59,60] and using 3D structured (porous) current collectors 

(e.g. copper foam) for lithium deposition [61,62].  

Transition metal oxides are usually used on positrode, but iron or tungsten oxide undergoes 

reversible changes at negative potentials [63-65]. The crystalline/amorphous core/shell 

structured iron oxide with oxygen vacancies exhibited both capacitive and Nernstian 

features in 1 mol/L LiOH as shown in Fig. 3a and 3b. Specific capacitance of 701 F/g was 

claimed as averaged from the GCD plot. However, the reported GCD at 0.5 mA/cm2 was non-

linear, whilst the equation used for capacitance calculation, 𝐶𝑠 =
𝐼∆𝑡

𝑚∆𝐸
, actually gives results 

for the inserted triangular dashed line in Fig. 3b. Thus, the performance should be better 

represented by specific charge. Further, the GCD is asymmetrical along the time axis, 

showing longer times for charging than discharging, suggesting a Columbic efficiency much 

lower than that for a true capacitive electrode.   

Fig. 3c and 3d compare the CVs and GCDs of WO3 and W5O14. Clearly, the oxygen deficient 

W5O14 performed better. In addition, the crystalline W5O14 contained more ion channels 

than WO3. Consequently, the specific capacitance increased from 371 F/g for WO3 to 524 F/g 

for W5O14 as derived from fairly linear GCDs. Note that, against convention, the GCDs in Fig. 

3d start from discharging and then charging.  

 

4.2. Electrolytes 

Aqueous electrolytes match well with many redox materials [16-18, 37-44], and support cells 

to work at high voltages (>12.4 V) without water decomposition. For example, lead-acid 

batteries use sulfuric acid as electrolyte and work at >2.0 V.  

An advanced approach to avoiding water decomposition is to use the so called water in salt 

(WIS) electrolytes in which all water molecules are bounded to, or surrounded closely by salt 

ions, water decomposition may not occur up to 3.0 V [66-69]. However, because of the 

minimum separation by a few layers of coordination and solvation water molecules, and 

hence strong attractions between cations and anions, WIS electrolytes show high viscosity 

and low conductivity. Addition of co-solvents could improve the performance, but also 

narrow the potential window [67,70].   

Non-aqueous electrolytes, including ionic liquids, offer wider potential windows for utilising 

the very negative potentials of, for instance, lithium metal or lithiated carbon [9-11,13-

15,45,71-73]. In such cases, the electrolyte not only conduct ions, but also participate in 

redox reaction, e.g. lithium-ion reduction or intercalation, which contributes directly to dis-

/charging of the cell.  
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Similarly, redox electrolytes also help enhance storage in supercapacitors via both capacitive 

and Nernstian mechanisms [51-54,74]. Comparing with making new electrode materials, 

dissolved redox species (DRS) in electrolyte offer a simpler and cheaper approach to 

enhanced storage. A key issue is the cycling of electro-reacted DRS between the positrode 

and negatrode via diffusion. For example, halide ions (X) are the early DRS [51,74] with a 

reversible electro-reaction of 3X = X3
 + 2e. Because both X and X3

 are anions, they should 

be electrostatically attracted to, and trapped inside the pores of the activated carbon 

positrode. However, oxidation of I occurs near the equal potential of the positrode and 

negatrode at full discharge, causing insufficient electrostatic attraction and hence redox 

cycling [52]. This understanding explains the current peaks near 0 V on the cell CV in Fig. 4a, 

and agrees with the absence of any current peaks on the CVs in Fig. 4b for the cell containing 

Br whose oxidation potential is about 500 mV more positive than that of I. Fig. 4c shows 

that simply discharging the cell to 0.1 V (not 0 V) also eliminated redox cycling [53].  By doing 

so, the cell repeated dis-/charging at 0.5 A/g to 4000 cycles with only 4 % capacitance loss.      

 

4.3. Emerging merit-merging innovations 

A particular recent progress is the combination of more than two storage mechanisms into 

supercapattery.  A zinc-bromine supercapattery was studied, combining EDL capacitive, 

pseudocapacitive and Nernstian storage [54], although the claimed pseudocapacitive 

storage was in fact Nernstian with Br oxidation.  This supercapattery was tested to 270 

Wh/kg at 9300 W/kg with 81% capacity retention after 5000 cycles. 

The combination of a positrode of the polyaniline/nano carbon fibres (NCF) composite, a 

NCF negatrode for lithium intercalation, and a polymer gel electrolyte had led to a flexible 

supercapattery that offered specific energy of 106.5 Wh/kg, and 70.3% capacity retention 

after 9000 cycles [75].  

 Last but not the least, the sandwich configuration of supercapattery (and supercapacitor) 

permits to use bipolar electrodes to serially stack multi-cells [76]. A basic advantage is that if 

n cells are to be serially connected, the number of electrodes is 2n for external connection, 

but n+1 for bipolar stacking [76]. This will reduce significantly the mass and volume of the 

stack, and benefit to all gravimetric and volumetric properties. Importantly, the bipolar 

plates must be both liquid and gas proof. While the initial effort used titanium foils as the 

bipolar plates, it was shown that 50 m thick carbon black/polyethylene composite films 

could be sufficiently conductive (through the film plane) and non-permeable, which also 

helped the fabrication of pouch cells for stacking [77].  The stack of bipolarly connected Zn-

Br2 cells performed satisfactorily, reaching 50 Wh/L and 500 W/L with less than 1 % loss over 

500 dis-/charging cycles.  Graphite plates with vertically grown CNTs on both sides were also 

used to stack EDL cells that retained 96.7% of the initial capacity after 50000 cycles [78].  

 

 

 

5. End remarks  
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Supercapattery is being developed amongst questions on what should be defined for battery 

and supercapacitor, particularly in relation with the confusion on pseudocapacitance. It is 

identified that electrode reactions can involve the transfer of either localised valence 

electrons governed by the Nernst equation which is the basis of batteries, or zone-

delocalised valence electrons leading to pseudocapacitive behaviour. Aiming at merging the 

merits of Faradaic Nernstian and capacitive storage mechanisms, supercapattery research 

has progressed steadily since 2018, utilising nanostructured and compounded metal oxides 

and sulfides capable of Nernstian storage, salt-in-water and redox active electrolytes, and 

bipolar stacks. There are undoubtedly further improvements but, thanks to the knowledge 

and technology advancements in batteries and supercapacitors, supercapattery will become 

more competitive and promising in the near future.    
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9. Figures and captions 

 

Fig. 1. (a) CVs in different potential ranges, and (b) a cyclic esrogram of electro-

deposited polyaniline in acidic aqueous electrolytes. Redrawn from refs [34] and [30].   
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Fig. 2. (a-c) Calculated GCD plots of potentials of the positrode (blue line) and negatrode 

(black line), and the cell voltage (red dashed lines) as a function of normalised time for 

three supercapatteries combining a pseudocapacitive positrode of narrow potential 

window with a Nernstian negatrode of quasi-reversibility (a), and a lithium metal or 

lithiated carbon negatrode (b), and an activated carbon positrode of wide potential 

window, and a lithiated carbon negatrode (c). (d-f) Experimentally recorded GCD plots of 

the cell voltage against time for supercapatteries with aqueous (d), ionic liquid (e), and 

aqueous + solid electrolytes. Redrawn from [4,38,55,56]. 
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Fig. 3. (a,c) CVs and (b,d) GCDs of nanostructured and oxygen deficient (a,b) iron oxide, 

and (c,d) tungsten oxides. Redrawn from refs. [63,65]. 
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Fig. 4. CVs of supercapattery with 

activated carbon positrode and negatrode 

containing indicated electrolytes. Note 

that the potential window is from 0 to 1.5 

V in (a) and (b) but from 0.1 to 1.5 V in (c) 

where the black line and red dashed line 

CVs were recorded before and after 100 

charging-discharging cycles. Redrawn 

from refs. [52, 53] 

 

 

 

 


